
2. CURRENTS AND THE BIOT-SAVART LAW

2.1 Electric currents

An electric current is a movement of charge along a line (a wire),

across a surface (a conducting sheet) or in a volume. We recall that

I dq dt=    and  I nAve=

2.1.1 Line of charge

A current in a wire can be considered a line of charge of linear

charge density λ moving at v ms-1.

If charge λvδt passes point in time δt, then

current is in amperes
(A) or coulombs per

second (Cs-1)

Current in a conducting
wire of cross-sectional
area A with n free

electrons per m3 and drift

velocity v ms-1

line charge λ Cm-1

v ms-1

vδt

charge λvδt passes
point in time δt



I v= λ

Note: we have identified current as a vector (see p209 of Griffiths).

2.1.2 Force on current-carrying wire

For a steady current and fixed magnetic field,

F dqm = ∫ ( )vxB
and

dq dl= λ

so that
F dlm = ∫ ( )vxB λ

     = ∫ ( )IxB dl (I and v are in same dir’n)

     = ∫ I d( )lxB (I and dl are in same dir’n)

velocity

v

BBBB

conducting wire



For current that is constant in magnitude,

F I dm = ∫ ( )lxB

2.1.3 Surface and volume currents

When a surface charge density σ moves with velocity v over a

surface we have a surface current and surface current density K:

K v= σ

and
F da dam = =∫ ∫( ) ( )vxB KxBσ

Similarly, when a current flows in some volume, we consider the

volume charge density ρ and volume current density J and

J v= ρ

and the magnetic force is

F d dm = =∫ ∫( ) ( )vxB JxBρ τ τ

dτ is a volume
element



2.1.4 Equation of continuity

Using

J
I

=
⊥

d
da

we can write

I Jda
S S

= =⊥∫ ∫ J.da

Using the divergence theorem (see the inside cover of Griffiths) we

see that the total charge leaving volume V per unit time is

J. ad
S∫ = ∇∫ ( ).J

V
dτ

J

da⊥is an infinitesimal cross-section

perpendicular to the current flow

J
I

=
⊥

d
da

J is the current per unit area
perpendicular to the flow

surface integral
over closed
surface S



(see Griffith, p32 for a discussion of the geometrical interpretation
of the divergence theorem)

Now

( )∇ = − = −∫ ∫ ∫.J
V V V

d
d
dt

d
t
dτ ρ τ

∂ρ
∂

τ

So that for any volume,

∇ = −.J
∂ρ
∂t

Equation of continuity

This is just an expression of the conservation of charge.

2.2 Biot-Savart law

Who were they?
Biot: French physicist (1774-1862) who worked on optics and took a lot of scientific
apparatus up in a hot air balloon with fellow physicist Gay-Lussac...
Savart: French professor (1791-1841) at the College de France. Collaborated with Biot.

What does the law do for us?
Tells us how to calculate the magnetic induction B due to steady currents.

We now use the Biot-Savart law to deal with problems in

magnetostatics: this is the situation of steady currents leading to

constant magnetic fields.

charge flowing
outward through
surface

decrease in the amount
of charge remaining in V



We must consider extended current distributions (cf. electrostatics

where you considered point charges; a moving point charge cannot

produce a constant magnetic field!)

Consider a current carrying wire in an arbitrary geometry:

The Biot-Savart law gives us:

B
dlxr

= ∫
µ
π
0

24
I

r

dl is an integration element of length along the current path

I

– +

dl

dB

r
Point at which
we want to
calculate B

The integral is carried out
over the closed current path



r is a position vector pointing from the element of circuit dl

towards the field point at which we want to know B

The magnetic induction B is measured in SI units teslas (T)

The constant µ0 = −4 10 7πx tesla metre ampere/  is called the

permeability of free space.

[Don’t be afraid of µ0 – ‘permeability of free space’ is rather olde

world English! All µ0 really does is fix the ‘strength’ of the

magnetic field: it determines the intensity of the magnetic induction.

Just look at the formula.]

2.2.1 How big is 1 tesla?

B is often given in the non-SI unit of gauss: 1T = 104 gauss.

Earth’s magnetic field is ~ 1 2 gauss so 1T is ~ 10,000 x Earth’s

field.



For comparison,

A small bar magnet will produce B ~10-2 T

MRI body scanner magnet B ~ 2T

A hair dryer B ~ 10-7 –10-3 T

Colour TV ~ 10-6 T

Magnets in the School of Physics research labs produce up to ~50T

At a sunspot B ~ 0.3 T

Sunlight B ~ 3 x 10-6 T

The field at the surface of a neutron star is thought to be ~108 T.



2.2.2 Biot Savart Law: Applications

1. B due to a circular current carrying loop

dB = 
µ
π
0

4
I dlxr̂

r2

and

B = 
µ
π
0

4
I dlxr̂

r2∫

z

B

dB

r

a

θθθθ

dl

θθθθ



The total magnetic induction is along the axis (symmetry – the

components pointing in directions perpendicular to the loop’s axis

sum to zero) and we see that

  dBz = 
µ
π
0

4
I 2

2

π
θ

a
r

cos

= 
µ0

2

2 2 3
22

Ia

a z( )+

 [see Griffiths p 218 and Tipler p887 (full details) ]

2. B around a long straight current carrying wire

B on axis of a
circular current
loop, radius a

I

dl

dB

r̂
Point at which
we want to
calculate B

θ

α

r

s



The Biot-Savart law is

B
dlxr

= ∫
µ
π
0

24
I

r

Now dlxr = dlsinθ and dB points in the azimuthal direction (φ̂)

around the wire. The right hand rule

gives the direction of φ̂ .

So that

dB =
µ
π

θ0
24

I dl
r
sin φ̂

Now express dl, sinθ and r in terms of α and s, and (see Tipler 892)

B =
−∫

µ
π

α α
π

π
0

2

2

4
I

dcos  φ̂

     =
µ
π
0

2
I
s

 φ̂

φ̂

I

s is radial distance from wire



This is consistent with what we already know about the field around

a straight wire:

3. Force of attraction between parallel current carrying wires

Consider two infinite parallel wires spaced d metres apart:

I

magnetic field lines
(B direction, arrowed,
is given by the ‘right
hand rule’)

long, current
carrying wire

φ̂

I Id

1111.... 2222....

wire 1. exerts a
force (directed to
the left) on wire 2.



Using the result from 2. above, the magnetic induction at radial

distance s from an infinite wire is

B
I
s

=
µ
π
0

2

So wire 1. produces a magnetic induction B at wire 2. of

B
I
d

=
µ
π
0

2

Using the result from section 2.1.2 above,

F lxBm = ∫ I d( )

we have

F = 



 ∫I

I
d

dl2
0 1

2
µ
π

Since we have chosen infinitely long wires, the dl∫  gives an infinite
force!

spacing between
the wires

Force on a current-
carrying wire in field B

B field due to current in wire I



However, the force per unit length is finite:

F per unit length =
µ
π
0 1 2

2
I I
d

For parallel currents: force is attractive

For anti-parallel currents: force is repulsive

4. Moving charges: magnetic and electric forces

Here is an interesting problem using the result we have just derived!

Consider two moving infinite lines of charge, λ coulombs per metre:

- - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - -
λ  C/m v m/s

a



The magnetic induction due to a straight wire is

B
I
r

=
µ
π
0

2

so the field at wire 2 due to wire 1 is

B
I
r2

0 1

2
=

µ
π

resulting in a force (d IdF lxB= )

F I
I
a

dl= 



 ∫2

0 1

2
µ
π

giving a magnetic force per unit length

F
I I
am =

µ
π
0 1 2

2
and with I I v1 2= = λ ,

F
v
am =

µ
π
λ0

2 2

2

The electric field of one line of charge is

E
s

=
1

2 0πε
λ

giving an electric repulsion per unit length of one wire on the other

F
ae =

1
2 0

2

πε
λ



[ E=F/q]. Equating Fm and FE,

F
v
am =

µ
π
λ0

2 2

2
 = F

ae =
1

2 0

2

πε
λ

v2

0 0

1
=
ε µ

v
x x

= =
− −

1 1

8 85 10 4 100 0
12 7ε µ π( . )( )

   = −2 998 108 1. x ms

Therefore, the electric and magnetic forces are equal when v = c!

according to this calculation.

Remember! The drift velocity of electrons in a conductor is

typically in the range mm.s-1 to cm.s-1 only – it is surprisingly small.


