
9. ELECTROMAGNETIC WAVES

9.1 Classical wave equation

We saw in PHYS1231 (!) how Newton’s law F = ma can be applied

to an element of string under tension to derive the differential

equation describing waves propagating with velocity υ.
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=      classical wave equation

(in the case of waves on a string υ = Τ µ ; T = tension, µ = string’s

mass per unit length).

 (see Tipler p446-448 (wave on string) and p1012-1014 (EM wave)

9.2 Wave equation solutions

Solutions of the classical wave equation are functions with the form

f g( ,z t) =  (z t)± υ

+ describes a wave travelling in −ve z-dirn.

− describes a wave travelling in +ve z-dirn.



and since the wave equation is linear (there are no differentials

raised to power 2 or higher) we can have superpositions of solutions

too:

f g h( ,z t) =  (z – t) +  (z + t)υ υ

Of all the (many!) possible mathematical functions g that are

solutions to the wave equation, harmonic (sine and cosine) functions

are the most useful:

f ( ,z t) =  A cos k(z – t) +υ δ[ ]

wave travelling toward +ve z plus wave
travelling toward −ve z is also a solution
of the wave equation
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We can re-write f(z,t) in various useful forms using
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A very useful form of solution is

 f ( , ) cos( )z t A kz t= ± ±ω δ

9.3 Wave equation solution in complex notation

Recalling that e iiθ θ θ= +cos sin , we can write

f ( , ) Re ( )z t Aei kz t= [ ]− +ω δ

angular frequency (rad.s-1)

frequency (Hz)wave velocitywavelength

wave number (m-1)

period (s) Frequency (Hz)

Re: take the real part of
this complex exponential



If we make the wave function complex by including a complex

amplitude Ã Aei= δ we write:

˜( , ) ˜ ( )f z t Aei kz t= −ω

9.4 Maxwell’s equations give propagating EM waves

If we take the two Maxwell eqns. (in differential form)
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and take the curl of these two in a region of space with

• no charge

• no current

Take curl of (iii):

∇× ∇×( ) = ∇ ∇( ) ∇ ∇×
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take curl of (iv)

∇× ∇×( ) = ∇ ∇( ) ∇ ∇× µ
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The equations for E and B
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These equations (obviously (!)) describe electromagnetic waves EM

propagating at velocity υ = c.



James Clerk Maxwell (1831-1879), Scottish mathematician and

physicist in “A Treatise on Electricity and Magnetism” (1873) first

showed that the (eponymous; Maxwell) equations implicitly require

the existence of EM waves travelling at the speed of light.

Maxwell also knew the numerical values of µ0 and ε0  measured in

Germany in 1856. The speed of light was also known.

History: Speed of light first investigated by Ole Römer in

1676. Römer observer the eclipse of Io, one of Jupiter’s

moons: Römer found the speed of light to be very large…but

finite!

Armand Fizeau used the Fizeau Wheel (a rotating toothed

wheel and distant mirror) and found c = 3.15 x108 ms-1 in

~1850.

(http://scienceworld.wolfram.com/physics/FizeauWheel.html

and links therein is an interesting source)



9.5 Power in EM waves

Electromagnetic waves transmit information and power. We are

already familiar with the energy density (per unit volume) in static

magnetic and electric fields:
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and since the electric and magnetic components contribute equally

(see Griffiths p 378, Example 9.2),
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The Poynting vector S gives the energy per unit area per second

and is defined

energy density in the
electromagnetic field
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Note that EM waves also carry momentum ℘=
1
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S you can

read about this on p381 of Griffiths)

For the sine squared and cos squared functions, averaged over a

cycle,

sin2  = cos2 = 1/2
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energy density x
velocity of EM waves
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The EM wave intensity is
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This is the average power per unit area transmitted or transported

by the wave. This is the intensity we met in PHYS1231 when

discussing waves, in particular interference and diffraction of EM

waves.

Problems 8, 9 and 10 on Problem Sheet 6 (the last sheet!) concern

EM wave calculations.
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