9. ELECTROMAGNETIC WAVES

9.1 Classical wave equation

We saw in PHYS1231 (!) how Newton's law $\mathbf{F}=$ ma can be applied to an element of string under tension to derive the differential equation describing waves propagating with velocity v.

$$
\frac{\partial^{2} f}{\partial z^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} f}{\partial t^{2}}
$$

(in the case of waves on a string $v=\sqrt{T / \mu} ; \mathrm{T}=$ tension, $\mu=$ string's mass per unit length).
(see Tipler p446-448 (wave on string) and p1012-1014 (EM wave)

9.2 Wave equation solutions

Solutions of the classical wave equation are functions with the form

$$
f(\mathrm{z}, \mathrm{t})=g(\mathrm{z} \pm \mathrm{vt})
$$

+ describes a wave travelling in -ve z -dir ${ }^{\mathrm{n}}$.
- describes a wave travelling in +ve z - dir $^{\mathrm{n}}$.
and since the wave equation is linear (there are no differentials raised to power 2 or higher) we can have superpositions of solutions too:

$$
f(\mathrm{z}, \mathrm{t})=\underbrace{g(\mathrm{z}-v \mathrm{t})+h(\mathrm{z}+v \mathrm{t})}
$$

wave travelling toward +ve z plus wave travelling toward -ve z is also a solution of the wave equation

Of all the (many!) possible mathematical functions g that are solutions to the wave equation, harmonic (sine and cosine) functions are the most useful:

We can re-write $f(z, t)$ in various useful forms using

A very useful form of solution is

$$
f(\mathrm{z}, \mathrm{t})=\mathrm{A} \cos (\mathrm{kz} \pm \omega \mathrm{t} \pm \delta)
$$

9.3 Wave equation solution in complex notation

Recalling that $\mathrm{e}^{\mathrm{i} \theta}=\cos \theta+\mathrm{i} \sin \theta$, we can write

$$
f(\mathrm{z}, \mathrm{t})=\operatorname{Re}_{\uparrow}\left[\mathrm{Ae}^{\mathrm{i}(\mathrm{kz}-\omega \mathrm{t}+\delta)}\right]
$$

Re: take the real part of this complex exponential

If we make the wave function complex by including a complex amplitude $\tilde{\mathrm{A}}=\mathrm{Ae}^{\mathrm{i} \delta}$ we write:

$$
\tilde{f}(\mathrm{z}, \mathrm{t})=\tilde{\mathrm{A}} \mathrm{e}^{\mathrm{i}(\mathrm{kz}-\omega \mathrm{t})}
$$

9.4 Maxwell's equations give propagating EM waves

If we take the two Maxwell eqns. (in differential form)
(iii) $\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$ (Faraday's law)
(iv) $\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \varepsilon_{0} \frac{\partial \mathbf{E}}{\partial \mathrm{t}} \quad$ (Ampère's law with \quad Maxwell's correction)
and take the curl of these two in a region of space with

- no charge
- no current

Take curl of (iii):

$$
\nabla \times(\nabla \times \mathbf{E})=\nabla(\nabla . \mathbf{E})-\nabla^{2} \mathbf{E}=\nabla \times\left(-\frac{\partial \mathbf{B}}{\partial \mathrm{t}}\right)
$$

$$
=-\frac{\partial}{\partial \mathrm{t}}(\nabla \times \mathbf{B})=-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{E}}{\partial \mathrm{t}^{2}}
$$

take curl of (iv)

$$
\begin{aligned}
& \nabla \times(\nabla \times \mathbf{B})=\nabla(\nabla . \mathbf{B})-\nabla^{2} \mathbf{B}=\nabla \times\left(\mu_{0} \varepsilon_{0} \frac{\partial \mathbf{E}}{\partial \mathrm{t}}\right) \\
& \quad=-\mu_{0} \varepsilon_{0} \frac{\partial}{\partial \mathrm{t}}(\nabla \times \mathbf{E})=-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{B}}{\partial \mathrm{t}^{2}}
\end{aligned}
$$

The equations for \mathbf{E} and \mathbf{B}
with

$$
v=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

These equations (obviously (!)) describe electromagnetic waves EM propagating at velocity $\mathrm{v}=\mathrm{c}$.

James Clerk Maxwell (1831-1879), Scottish mathematician and physicist in "A Treatise on Electricity and Magnetism" (1873) first showed that the (eponymous; Maxwell) equations implicitly require the existence of EM waves travelling at the speed of light.

Maxwell also knew the numerical values of μ_{0} and ε_{0} measured in Germany in 1856. The speed of light was also known.

History: Speed of light first investigated by Ole Römer in 1676. Römer observer the eclipse of Io, one of Jupiter's moons: Römer found the speed of light to be very large...but finite!

Armand Fizeau used the Fizeau Wheel (a rotating toothed wheel and distant mirror) and found $c=3.15 \times 10^{8} \mathrm{~ms}^{-1}$ in ~1850.
(http://scienceworld.wolfram.com/physics/FizeauWheel.html and links therein is an interesting source)

9.5 Power in EM waves

Electromagnetic waves transmit information and power. We are already familiar with the energy density (per unit volume) in static magnetic and electric fields:

$$
\mathrm{u}=\frac{1}{2}\left(\varepsilon_{0} \mathrm{E}^{2}+\frac{1}{\mu_{0}} \mathrm{~B}^{2}\right)
$$

and since the electric and magnetic components contribute equally (see Griffiths p 378, Example 9.2),

$$
B^{2}=\frac{1}{c^{2}} E^{2}=\mu_{0} \varepsilon_{0} E^{2}
$$

and,

$$
\mathrm{u}=\varepsilon_{0} \mathrm{E}^{2}=\varepsilon_{0} \mathrm{E}_{0}^{2} \cos ^{2}(\mathrm{kz}-\omega \mathrm{t}+\delta)
$$

The Poynting vector \mathbf{S} gives the energy per unit area per second and is defined

$$
\mathbf{S}=\frac{1}{\mu_{0}}(\mathbf{E} \times \mathbf{B})
$$

and using * above,

$$
\mathbf{S}=\mathrm{c} \varepsilon_{0} \mathrm{E}_{0}^{2} \cos ^{2}(\mathrm{kz}-\omega \mathrm{t}+\delta) \hat{\mathbf{z}}=\mathrm{cu} \hat{\mathbf{z}}
$$

energy density x velocity of EM waves
$\left[\begin{array}{l}\text { Note that EM waves also carry momentum } \wp=\frac{1}{\mathrm{c}^{2}} \mathbf{S} \text { you can } \\ \text { read about this on p381 of Griffiths) }\end{array}\right]$

For the sine squared and cos squared functions, averaged over a cycle,

$$
\begin{array}{r}
\left\langle\sin ^{2}\right\rangle=\left\langle\cos ^{2}\right\rangle=1 / 2 \\
\left\{\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \cos ^{2}(\mathrm{kz}-2 \pi \mathrm{t} / \mathrm{T}+\delta) \mathrm{dt}=1 / 2\right\}
\end{array}
$$

so that

$$
\langle\mathbf{u}\rangle=\frac{1}{2} \varepsilon_{0} \mathrm{E}_{0}^{2}
$$

and

$$
\langle\mathbf{S}\rangle=\frac{1}{2} \mathrm{ce}_{0} \mathrm{E}_{0}^{2} \hat{\mathbf{z}}
$$

The EM wave intensity is

$$
\mathrm{I} \equiv\langle\mathrm{~S}\rangle=\frac{1}{2} \mathrm{c} \mathrm{\varepsilon} \varepsilon_{0} \mathrm{E}_{0}^{2}
$$

This is the average power per unit area transmitted or transported by the wave. This is the intensity we met in PHYS1231 when discussing waves, in particular interference and diffraction of EM waves.

Problems 8, 9 and 10 on Problem Sheet 6 (the last sheet!) concern EM wave calculations.

