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General Tensor Analysis 117
Let us now consides the geometrical meaning of the equations x, = const,
and xp = const. We shall derive a condition under which the equation
w(z, i, 5,8) =0 (35,300
can be interpreted as the equation of a surface in moticn. It follows from this
equation that the differentials of space and time coordinates, are related by
g iz -ty dy 4 w; ds + wpdi =0 (35.31)
where ez, wy, t; and oy denote the derivatives of w with respect to z, y, =
and . We take a displacement (dz, dy, dz) in the direction of the normal to the
surfuce and put

(35.32)
so that |[dn| is the abaolute value of the displacement. Inserting into (35.31)

win et

grad r.]!uhl b gl == 0 {35.33)
and therefore the square of the displacement veloaty
dn)
" P foc 35.34
ot = () (35.34)
will be given by
el
o 1 35.30
{erad w)® 9:9)

Thus (35.30) can be interpreted as the equation of a surface, each point of
which moves normally with a speed given by (35.35). However, such an inter-
pretation is only possible as long as this speed does not exceed that of light.
According to (35.35) and (35.01) this means that we must have

(Va)2 = 0 (35.36)

The equality sign is valid for motion with the speed of light.
On the other hand, if

(Vea)t=> 0 (35.37)
equation (35.30) can be solved for the time and written in the form
1
{ = - flx, ¥, 3) (35.38)
pe
with (grad f)*<1 (35.39)

Equation (35.38) assigns to every point in space a definite instant of time in
such a way that all the four-dimensional * point-instants * are quasi-simul-
taneous. Suoch an equation may be called a time-equation . We recall
that time equations occurred in Section 3 in connection with the question
of the characteristics of Maxwell’s equations,

As we remarked in Seetion 3, an equation w = 0 can be considered as the
equation of a hypersurface in the four-dimensional space-time manifold. Such
hypersurfaces can then be divided into two classes,

If {Veod® < 0 wo can say that one of the dimessions of the hypersurface s

( tinie-like (the insecurste phrase © the surfsce is time-like " is sometimes used).

o IS IMAGINARY, and therefore “time-like”




o IS REAL, and therefore “space-like”
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By (35.35) this describes an ordinary two-dimensional surfacet moving with a
velocity less than that of light.

If {Vea)® = 0, on the other hand, we say that the hypersuriacy is space-iike,
it then represents the whole of infinite space, the various points of which are
all taken at different instants of time, the time ¢ at which the point (z, ¥, z)
is taken, being determined by the time equation, i.e. the equation of the hyper-
surface ; the instants of time assigned to any two points in space must be so
close that the corresponding four-dimensional interval is always space-like.

We use the fact that (Ve)® is an invariant and in turn pub @ = x5, @ =,
e =z, and w = x5, This gives

(Vizg)? = g% 0 (35.40)
and (V)P =g'' = 0; (Vo)l=g2<0; (Vz,)° g2<0 (35.41)
Henee the equation z, = const. is a time equation and the three equations
Zp = const. (k= 1, 2, 3) represent surfaces moving in the direction of their

normals with less than light velocity. These lattor are thus equations of moving
spatial coordinate surfaces,

It follows also from our conditions on the transformations of space and
time coordi

ates that constant values of z,, =, and =, correspond, in any
mertial frame of refercnce, to motion of a point with less than light velocity,

In classical Newtonian mechanics one often uses n time dependent co-
ordinate transformation which is interpreted as passing to & moving frame of
reference. In comparing coordinate transformations in Newtonian mechanics
with the transformations of space and time coordinates in the Theory of
Relativity it is essential to realize the following. Firstly, in the general case of
accelerated motion the very notion of a frame of reference in Newtonian mech-
anies 15 not the same as in Relativity, The Newtonian concept involves the
idea of an absolutely rigid bodv and the instantaneous propagation of light.
In Relativity, on the other hand, the notion of a rigid body is used, if at all,
not in an absolute sense but only fo: aon-accelerated motions and in the absence
of external forces, and is of an auxiliary nature: the concept of a frame of
reference is not based on it but on the law of wave front propagation. The
prototype of a Newtonian frame of reference is a rigid scaffolding, the prototype
of a Relativistic one is the radar station. Secondly, the class of transformations
permissible in Newtonian mechanics is much wider than in the Theory of
Relativity ; Newtonian mechanics does not have to consider the limitations,
discussed above, which arise from the existence of a limit ing speed.

As an cxample we consider a transformation which can be interpreted in
Newtonian mechanics as going over to a uniformly accelernted frame. Let
', y', 2" and ¢’ be the space and time coordinates in an inertial frame, i.e.
Galilean coordinates. We put

T ¥ al®: Y ¥ 2 =z (35.42)

and also I f——lx. (35.43)
o

tIn the four-dimensional manifold a bypersurface bas thiee dimensions but in the
prosent caso only two of these are spatial,
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The variables z, v, = and { can be interpreted as space and time coordinates
in a certain accelerated frame {in the Newtonian sense and in the corresponding
approximation). Inserting (35.42) and (35.43) into the expression for ds® we get

ds® = (c* — 20z — aM*) di* — dz? — dy® — ds? 4+ = (zdt 4 tdx)®  (35.44)
o

The required inequalities for the coefficients will hold if the conditions

a¥s ( ar\* a¥%? Sk
[0 [1 e ] s e (35.45)
&c* \ c=J c*
are satisfied. In addition we can require that
a az e
l — =20 (35.46)

el c?
These inequalities show that the substitutions (35.42), (35.43) are permissible
only in a part of space and only for a limited length of time.
Another example is the transformation corresponding to the introduction of
a uniformly rotating frame. We pot

T =z coswl + i sin ol ;
;

! iy (35.47)
y - 81N aé - §f COS ool * [ ==
and abtain
dy? = [e? — wiz® + y¥)] di* — 2oy dx — zdy) dl — dz? — dy* — dz?
(35.48)
The conditions on the coelicients require
et — wiz® + ¢ >0 (35.49)
which is satisfied only for distances from the axis of rotation less than thet
where the linear velocity of the rotation equals the speed of light.
We stress once again that the examples given here have physical sense only
in a resion in which Newtonian mechanies is applicable (¢ee also Section 61).
It is obvious that the introdustion of endinary enrvilinear spatisl coordinates
is always an sllowed teansformation. As long as the transformations do not
involve time they have the same geometricsl mesning as in non-relativistic
theory, Therefore we refrain from discussing them,

36. General Tensor Analysis and Generalized Geometry

In the previous section we considered the expressions

.l L ]
(Vis)e > (36.01)
< 7 iz,
% gl
amnd
dst = ¥ g dz,_dz, (36.02)
&Ar 3 ==

which were obtained from the usual exprewsions of Relativity Theory by
introducing variables »,, =, =, and x, in place of the space and time coordinates
x, y, = and L. We cstablished the conditions subject to which the variable x4
can characterize o sequence of events in time and the vanables =, =, and =,
their location in space.

REMOVES IMAGINARY ANGULAR
VELOCITY ® FROM CONSIDERATION




