8. MAXWELL'S EQUATIONS

So far we have seen the four equations:

(i)
$$\nabla .\mathbf{E} = \frac{1}{\varepsilon_0} \rho$$
 (Gauss's law)

(ii)
$$\nabla .\mathbf{B} = 0$$
 (no name, just div **B** equals zero!)

(iii)
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
 (Faraday's law)

(iv)
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$
 (Ampère's law)

that together are *almost* Maxwell's equations aside...we need to include the displacement current.

8.2 Displacement current

Up to now we have written

$$\nabla x \mathbf{H} = \mathbf{J}$$

which would be one of the 'Maxwell equations' but there is a term missing (in fact is was Maxwell himself who derived this term to 'fix-up' the set of four Maxwell equations giving the correct description of EM).

If we take the divergence of both sides of $\nabla x \mathbf{H} = \mathbf{J}$ we find

$$\nabla . (\nabla \mathbf{x} \mathbf{H}) = 0 = \nabla . \mathbf{J}$$
 (*)

div of curl of any vector field is zero (see vector identity (9) inside front cover of Griffiths)

But the Continuity eqn says

$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t}$$

for time-varying fields so (*) cannot be correct in general. To correct things we need to add the time-varying term $\frac{\partial \rho}{\partial t}$ to the r.h.s of (*):

$$\nabla \cdot (\nabla \mathbf{x} \mathbf{H}) = 0 = \nabla \cdot \mathbf{J} + \frac{\partial \rho}{\partial t}$$

and since $\nabla \cdot \mathbf{D} = \rho$,

$$\nabla \cdot (\nabla \mathbf{x} \mathbf{H}) = 0 = \nabla \cdot \left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial \mathbf{t}} \right)$$

or,

$$\nabla \mathbf{x} \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

'corrected' Maxwell equation for curl**H**

The time-varying term $\frac{\partial \mathbf{D}}{\partial t}$ is called the **displacement current**.

The equation

$$\nabla \mathbf{x} \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

tells us that there will be a magnetic field (due to the displacement current $\partial \mathbf{D}/\partial t$) even when there is no current flow (i.e. when $\mathbf{J} = 0$).

We usually write $\nabla \mathbf{x} \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$ in terms of **B** and **E**:

$$\nabla \mathbf{x} \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$
 by recalling $\mathbf{B} = \mu_0 \mathbf{H}$ (free space) and $\mathbf{D} = \epsilon_0 \mathbf{E}$ (free space)
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

8.2 Maxwell's Equations in differential form

We can now write the complete set of Maxwell equations, including the correction term (the displacement current):

(i)
$$\nabla .\mathbf{E} = \frac{1}{\varepsilon_0} \rho$$
 (Gauss's law)

(ii)
$$\nabla .\mathbf{B} = 0$$
 (no name, just div \mathbf{B} equals zero!)

(iii)
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
 (Faraday's law)

(iv)
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$
 (Ampère's law with Maxwell's correction)

Eqns (i) – (iv) tell us how CHARGES produce FIELDS

and the force equation (electric + magnetic force acting on a moving charge)

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

tells us how FIELDS affect CHARGES which together with the equation of continuity

$$\nabla . \mathbf{J} = -\frac{\partial \rho}{\partial t}$$

provide all the mathematical apparatus needed to describe electromagnetism – that is to solve all problems in classical electromagnetism on the macroscopic scale.

8.3 Maxwell's equations in integral form

Maxwell's equations in integral form perhaps give us a greater physical insight:

(i)
$$\oint_{S} \mathbf{D.da} = Q_{f,enc}$$
 \uparrow

integrate over closed surface S

(ii) $\oint_{S} \mathbf{B.da} = 0$

(iii)
$$\oint_{L} \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_{S} \mathbf{B} \cdot d\mathbf{a}$$

$$\uparrow \qquad \qquad \uparrow$$
closed loop L bounding surface S
$$\downarrow \qquad \qquad \downarrow$$
(iv) $\oint_{L} \mathbf{H} \cdot d\mathbf{l} = I_{f,enc} + \frac{d}{dt} \int_{S} \mathbf{D} \cdot d\mathbf{a}$

8.4 Visualization of Maxwell's equations

(i) Gauss' law:
$$\oint_{S} \mathbf{D} . d\mathbf{a} = Q_{f,enc}$$
 or $\oint_{S} \mathbf{E} . d\mathbf{a} = \frac{Q_{total}}{\epsilon_0}$

Lines of E begin on positive charges. **E** lines exit enclosing volume τ through surface S. Gauss' law says the total flux of **E** leaving enclosed volume τ is equal to the total charge enclosed by surface S divided by ϵ_0 .

Lines of magnetic induction B pass through the closed surface S. The net outward flux (divB) through the surface is zero.

Gauss divergence theorem states, for any 'well-behaved' vector field **A**,

(iii) Faraday's law $\oint_{L} \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_{S} \mathbf{B} \cdot d\mathbf{a}$

The emf induced in the loop L defined on surface S is equal to the rate of change of the magnetic flux through the surface enclosed by L.

Faraday's law is easy to see (and you'll recognise it from first year!) if we take a physical (actual) loop (e.g. of wire):

Permanent magnet moved into loop of wire

provides a changing magnetic flux (the $-\frac{d}{dt}\int_{S} \mathbf{B} . d\mathbf{a}$ term) generating an emf in the wire (the $\oint_{L} \mathbf{E} . d\mathbf{l}$ term; electric field \mathbf{E} established the emf) which deflects the galvanometer.

(iv)
$$\oint_{L} \mathbf{H.dl} = I_{f,enc} + \frac{d}{dt} \int_{S} \mathbf{D.da} = \int_{S} \left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right) . d\mathbf{a}$$
 or, equivalently,
$$\oint_{L} \mathbf{B.dl} = \mu_{0} \int_{S} \left(\mathbf{J} + \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t} \right) . d\mathbf{a}$$

The term \int_{L} **H.**dl is equal to the sum of two contributions linking loop L

- (i) the free current J,
- (ii) the displacement current $\partial \mathbf{D}/\partial t$

The arrows on the diagram above give the direction of the free current **J**.

If **D** is downward and increasing or upward and decreasing the displacement current $\mathbf{J}_{\mathrm{D}} = \partial \mathbf{D}/\partial t$ is also in the downward direction